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Redundancy

• Some vendors, like Stratus, developed redundant hardware for 
‘non-stop processing’
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CPU CPU

CPU

? ?

• Stratus users then found that the software is where things 
broke:

• note that the ‘backup’ IN set in Arianne failed first

• Next idea: multi-version programming
• BUT errors significantly correlated, and failure to understand 

requirements comes to dominate (Knight/Leveson 86/90)



737 Cockpit



Panama crash, June 6 1992

• Need to know which way is up!

• New Electronic Flight Information 
System (each side), old artificial 
horizon in middle

• Both EFIS fed off same gyros, 
thought to be OK because of the AH

• EFIS failed – loose wire

• Pilots watched EFIS, not AH (bigger 
and right in front of them)

• 47 fatalities

• And again: Korean Air cargo 747, 
Stansted Dec 22 1999



Kegworth crash, Jan 8 1989

• BMI London-Belfast, fan blade 
broke in port engine

• Crew shut down starboard engine 
and did emergency descent to 
East Midlands Airport

• Opened throttle on final approach: 
no power

• 47 dead, 74 serious injuries

• Initially blamed wiring technician! 
Later: cockpit design (pilots had 
misunderstood airflow bringing 
smoke into cockpit, and had not 
consulted relevant instruments)



Complex socio-technical systems

• Aviation is actually an easy case as it’s a mature evolved 
system!

• Stable components: aircraft design, avionics design, pilot 
training, air traffic control …

• Interfaces are stable too

• The capabilities of crew are known to engineers

• The capabilities of aircraft are known to crew, trainers, 
examiners

• The whole system has good incentives for learning and 
significant effort is made to learn every possible lesson from 
every incident



Cognitive factors I

• Trained-for problems are dealt with using rules we evolve, and 
are partly automatic

• operators are taught (or just deduce) rules of what to do
• operators may not have access to true state of system but infer it
• when environment changes but rules don’t, you get errors

• Over time, routine tasks are dealt with automatically
• the rules have given way to skill

• Many errors derive from highly adaptive mental processes
• we deal with novel problems using knowledge, in a conscious way
• in unusual system states operators try to reason about what is 

going on; they may try experiments to test/refine their knowledge
• if a test succeeds operator was clever, if it fails they are blamed

• Read up the psychology that underlies errors!



Cognitive factors II

• The ability to automatise routine actions leads to absent-minded 
slips, aka ‘capture errors’

• driving ‘home’ to your old house

• Slips and lapses
• forgetting plans, intentions; strong habit intrusion
• misidentifying objects, signals (often Bayesian)
• retrieval failures; tip-of-tongue, interference
• premature exits from action sequences, e.g. leaving card in ATM

• Rule-based mistakes; applying wrong procedure

• Knowledge-based mistakes; heuristics and biases



Cognitive factors III

• Training and practice help – skill is more reliable than 
knowledge!

• Error rates (motor industry):
• inexplicable errors, stress free, right cues – 10-5

• regularly performed simple tasks, low stress – 10-4

• complex tasks, little time, some cues needed – 10-3

• unfamiliar task dependent on situation, memory – 10-2

• highly complex task, much stress – 10-1

• creative thinking, unfamiliar complex operations,
time short & stress high – O(1)



Cognitive factors IV

• Violations of rules matters
• they’re often an easier way of working, and sometimes necessary
• you don’t fix safety problems by telling people not to do something
• the ‘right’ way of working should be easiest: look where people 

walk, and lay the path there

• ‘Blame and train’ as an approach to systematic violation is 
suboptimal

• July 86 (LAX) pilot reaching for fuel switch accidentally turned off 
both engines, plane dropped from 1700 to 600 feet before 
restarted. Instead of just blaming pilot a safety guard was added.

• The fundamental attribution error
• if he trips over a rock he’s clumsy, if I do, the rock is in the way! 

• Need right balance between ‘person’ and ‘system’ models of 
safety failure



Cognitive factors V

• Ability to perform certain tasks can very widely across 
subgroups of the population

• Age, sex, education, … can all be factors 

• Risk thermostat – function of age, sex

For example:

• Banks tell people ‘parse URLs’

• Baron-Cohen: people can be sorted by SQ (systematizing) and 
EQ (empathising)

• Is this correlated with ability to detect phishing websites by 
understanding URLs?





Results

• Ability to detect phishing 
is correlated with SQ-EQ

• It is (independently) 
correlated with gender

• The ‘gender HCI’ issue 
applies to security too



Cognitive factors VI

• People’s behaviour is strongly influenced by their team

• Social psychology is a huge subject!

• Note selection effects – e.g. risk aversion
• corporate security officers tend to be risk-averse
• entrepreneurs tend to be more risk-loving
• so large firms spend too much on security & small firms too little

• Some organisations focus on inappropriate targets
• disabling safety interlocks to raise production by 5%
• NASA were more concerned about schedules than safety and lost 

Challenger when the O-ring failed

• Add in risk dumping, blame games

• It can be hard to state the goal honestly!



Software safety myths I

• ‘Computers are cheaper than analogue devices’
• shuttle software costs $100m pa to maintain (1993)

• ‘Software is easy to change’
• exactly! But it’s hard to change safely

• Computers are more reliable’
• 16 potentially fatal bugs identified in shuttle software (to 1995); 

half of them had flown. 12 lower severity bugs triggered in flight

• ‘Increasing reliability increases safety’
• they’re correlated but not completely
• safety is a system property

• ‘Formal verification can remove all errors’
• not even for 100-line programs. That said, is widely used on 

hardware & some subsets of real systems have been verified



Software safety myths II

• Testing can make software arbitrarily reliable
• for MTBF of 109 hours you must test 109 hours 

• Software re-use increases safety
• not in Arianne, Patriot and Therac, it didn’t
• several aviation examples relating to Greenwich meridian, flying 

across the equator or over the Dead Sea (‘below sea level’)

• Automation can reduce risk
• sure, if you do it right – which often takes an extended period of 

socio-technical evolution



Defence in depth

• Reason’s ‘swiss cheese’ model

• Stuff fails when holes in defence layers line up

• Thus: ensure human factors, software, procedures complement 
each other



Pulling it all together I

• First, understand and prioritise hazards. e.g. the motor industry 
uses:

1. Uncontrollable: outcomes can be extremely severe and not 
influenced by human actions

2. Difficult to control: very severe outcomes, influenced only 
under favourable circumstances

3. Debilitating: usually controllable, outcome at worst severe

4. Distracting; normal response limits outcome to minor

5. Nuisance: affects customer satisfaction but not normally 
safety

• Develop safety case: hazards, risks, and  strategy per hazard 
(avoidance, constraint)



Pulling it all together II

• Who will manage what?
• trace hazards to hardware, software, procedures
• trace constraints to code, and identify critical components / 

variables to developers
• develop safety test plans, procedures, certification, training, etc

• Figure out how all this fits with your development methodology
• waterfall, spiral, evolutionary …

• Managing relationships between component failures and 
outcomes can be bottom-up or top-down

• Bottom-up: NASA’s ‘failure modes and effects analysis’ (FMEA)
• look at each component and list failure modes
• then use secondary mechanisms to deal with interactions
• software not within original NASA system – but other organisations 

apply FMEA to software



Pulling it all together III

• Top-down – fault tree (in security, a threat tree)
• work back from identified hazards to identify critical components



Pulling it all together IV

• Although some failures happen during the ‘techie’ phases of 
design and implementation, most happen before or after

• The soft spots are requirements engineering, and later on 
operations / maintenance

• these are the interdisciplinary phases, involving systems people, 
domain experts and users, cognitive factors, and institutional 
factors like politics, marketing and certification

• Managing a critical property – safety, security, real-time 
performance – is hard!



The “bug heard around the world” I

• April 10 1981 (with the world 
watching)

• Computer glitch delayed first 
shuttle orbital flight at T-20m

• Shuttle has 4-fold redundancy 
(Fail Operational / Fail Safe)

• The 4 control computers all 
ran the same code and voted 

• The same code was a concern, 
so had added a fifth computer, 
with independently written 
software



The “bug heard around the world” II

• The fifth listened to bus traffic and compared decisions
• if decisions incorrect, astronauts invited to switch system
• bus traffic synchronised (so telemetry simpler to perform)
• refused to listen to bus when it was supposed to be idle

• The 4 computers needed the same clock values
• hardware access caused inconsistencies, so would examine top of 

ready-to-run process queue. This held a consistent value of “soon”
• only at system start would hardware clock be consulted

• Pre-launch the 4 processors had a few processes out of synch
• the 5th machine failed to see any data on the bus – hence the abort
• in fact the majority of processes were one cycle late



The “bug heard around the world” III

• A software change 2 years earlier meant an invocation of a 
common routine to initialise the data bus. This had a delay in it 
which was achieved by putting oneself onto process queue.

• then 1 year before launch the delay had been made slightly longer 
to prevent routine hogging CPU when it was used elsewhere during 
critical flight processing

• Hence the wrong time value seen by the first processor turned 
on – but only 1 chance in 67 that this affected the bus timing…

• So ‘switching it off and on again’ would have fixed problem
• problem very hard to spot in testing – needs an almost complete 

set of components to manifest itself (or very accurate test harness 
to simulate them)

• was in fact seen in the lab some 4 months before launch, but 
significance wasn’t realised and it never happened again …


